

# The state of Plateliai lake watershed

Implementers: Dr. Martynas Bučas, Dr. Jolita Petkuvienė, Dr. Diana Vaičiūtė, dokt. Jonas Gintauskas, dokt. Edvinas Tiškus, Dr. Mindaugas Žilius, Greta Kilmonaitė, Andrius Skersonas, Dr. Irma Vybernaitė-Lubienė, Nijolė Domarkienė, Dr. Donata Overlingė, Dr. Tobia Piloti.

# Plateliai lake

#### Mesotrophic lake

Largest in Samogitia and 9th biggest in Lithuania. 12 km<sup>2</sup>, average depth 10.5 m, deepest place 48.5 m 7 islands 1 river outflow

Heavy recreational use: nature trails bicycle path around the lake diving and yacht club swimming and camping places traditional events



Žemaitija national park administration picture







Marija Jankauskienė pictures



# Need of research









### Outlines

# I task. LAND USE IN THE WATERSHED AND RETROSPECTIVE ANALYSIS OF PRIMARY PRODUCERS

# II task. STATE-OF-ART ECOLOGICAL STATUS OF THE LAKE INCLUDING INFLOWS

III task. PRELIMINARY MEASURES FOR WATER QUALITY IMPROVEMENT

# I task. LAND USE IN THE WATERSHED AND RETROSPECTIVE ANALYSIS OF PRIMARY PRODUCERS



Watershed area: 35 km<sup>2</sup> Sub-basins: 26 Residence time: 12 % year<sup>-1</sup>





areas





6 sub-basins with anthropogenic land use of > 50 %

2 of them with direct anthropogenic land use within 25 m from the shoreline in the Western part



### **Retrospective analysis of primary producers**



### **Retrospective analysis of chloropyll-a**





### Retrospective analysis of chloropyll-a





### **Retrospective analysis of reeds**



The area occupied by reed stands tripled since 1990's, mainly in the Eastern part of the lake





# II task. STATE-OF-ART ECOLOGICAL STATUS OF THE LAKE INCLUDING INFLOWS

### M&M: Lake tributaries and outflow

- Monthly sampling from January to December 2022
- 15 study sites:
  - 10 creeks inflowing into Plateliai Lake
  - 1 creeks outflowing from Plateliai Lake
  - 4 study sites in creeks upstream
- Analysis:
  - Basic water quality indicators (T, O<sub>2</sub>, pH, conductivityBOD<sub>7</sub>)
  - Nitrogen and phosphorus forms (TN, TP,  $DIN=NH_4^+ + NO_x, PO_4^{-3-}$ )
- Debit











| Study sites<br>No. | $\mathbf{NH_{4}^{+}}$ | NO3 <sup>-</sup> | TN   | PO <sub>4</sub> <sup>3-</sup> | ТР    | BOD <sub>7</sub> | O <sub>2</sub> |
|--------------------|-----------------------|------------------|------|-------------------------------|-------|------------------|----------------|
| ST-1               | 0.02                  | 0.01             | 0.47 | 0.008                         | 0.028 | 1.54             | 8.37           |
| ST-2               | 0.02                  | 0.06             | 0.47 | 0.003                         | 0.022 | 1.82             | 10.88          |
| ST-3               | 0.34                  | 0.12             | 1.53 | 0.045                         | 0.115 | 3.09             | 5.13           |
| ST-4               | 0.06                  | 0.02             | 0.69 | 0.008                         | 0.031 | 1.80             | 7.05           |
| ST-5               | 0.07                  | 0.41             | 1.28 | 0.051                         | 0.192 | 4.10             | 6.98           |
| ST-6               | 0.04                  | 0.24             | 0.79 | 0.010                         | 0.035 | 2.60             | 9.42           |
| ST-7               | 0.04                  | 1.00             | 1.48 | 0.010                         | 0.050 | 2.37             | 10.71          |
| ST-8               | 0.15                  | 0.14             | 0.90 | 0.019                         | 0.066 | 2.21             | 6.98           |
| ST-9               | 0.04                  | 0.15             | 0.71 | 0.008                         | 0.035 | 2.06             | 8.19           |
| ST-10              | 0.04                  | 0.10             | 0.76 | 0.005                         | 0.028 | 2.22             | 5.38           |
| ST-11              | 0.02                  | 0.23             | 0.56 | 0.012                         | 0.039 | 2.17             | 12.33          |
| ST-12              | 0.06                  | 0.20             | 0.57 | 0.013                         | 0.035 | 1.79             | 10.74          |
| ST-13              | 0.02                  | 0.11             | 0.62 | 0.009                         | 0.027 | 2.01             | 11.07          |
| ST-14              | 0.04                  | 0.06             | 0.54 | 0.008                         | 0.026 | 2.11             | 7.96           |
| ST-15              | 0.02                  | 0.03             | 0.43 | 0.0052                        | 0.017 | 2.07             | 11.76          |

 High ecological status of all indicators assessed in 5 creeks: St-2, St-11, St-12 St-13 and St-15.



| Study sites<br>No. | $\mathbf{NH}_{4}^{+}$ | NO <sub>3</sub> - | TN   | PO43-  | TP    | BOD <sub>7</sub> | <b>O</b> <sub>2</sub> |
|--------------------|-----------------------|-------------------|------|--------|-------|------------------|-----------------------|
| ST-1               | 0.02                  | 0.01              | 0.47 | 0.008  | 0.028 | 1.54             | 8.37                  |
| ST-2               | 0.02                  | 0.06              | 0.47 | 0.003  | 0.022 | 1.82             | 10.88                 |
| ST-3               | 0.34                  | 0.12              | 1.53 | 0.045  | 0.115 | 3.09             | 5.13                  |
| ST-4               | 0.06                  | 0.02              | 0.69 | 0.008  | 0.031 | 1.80             | 7.05                  |
| ST-5               | 0.07                  | 0.41              | 1.28 | 0.051  | 0.192 | 4.10             | 6.98                  |
| ST-6               | 0.04                  | 0.24              | 0.79 | 0.010  | 0.035 | 2.60             | 9.42                  |
| ST-7               | 0.04                  | 1.00              | 1.48 | 0.010  | 0.050 | 2.37             | 10.71                 |
| ST-8               | 0.15                  | 0.14              | 0.90 | 0.019  | 0.066 | 2.21             | 6.98                  |
| ST-9               | 0.04                  | 0.15              | 0.71 | 0.008  | 0.035 | 2.06             | 8.19                  |
| ST-10              | 0.04                  | 0.10              | 0.76 | 0.005  | 0.028 | 2.22             | 5.38                  |
| ST-11              | 0.02                  | 0.23              | 0.56 | 0.012  | 0.039 | 2.17             | 12.33                 |
| ST-12              | 0.06                  | 0.20              | 0.57 | 0.013  | 0.035 | 1.79             | 10.74                 |
| ST-13              | 0.02                  | 0.11              | 0.62 | 0.009  | 0.027 | 2.01             | 11.07                 |
| ST-14              | 0.04                  | 0.06              | 0.54 | 0.008  | 0.026 | 2.11             | 7.96                  |
| ST-15              | 0.02                  | 0.03              | 0.43 | 0.0052 | 0.017 | 2.07             | 11.76                 |

- High ecological status of all indicators assessed in 5 study sites: St-2, St-11, St-12 St-13 and St-15.
- Good ecological status assessed in 5 study sites: St-1, St-6, St-7, St-9 and St-14 due to O<sub>2</sub> and BOD<sub>7</sub>.



| Study sites<br>No. | $\mathbf{NH}_4^+$ | NO <sub>3</sub> - | TN   | PO <sub>4</sub> <sup>3-</sup> | ТР    | BOD <sub>7</sub> | O <sub>2</sub> |
|--------------------|-------------------|-------------------|------|-------------------------------|-------|------------------|----------------|
| ST-1               | 0.02              | 0.01              | 0.47 | 0.008                         | 0.028 | 1.54             | 8.37           |
| ST-2               | 0.02              | 0.06              | 0.47 | 0.003                         | 0.022 | 1.82             | 10.88          |
| ST-3               | 0.34              | 0.12              | 1.53 | 0.045                         | 0.115 | 3.09             | 5.13           |
| ST-4               | 0.06              | 0.02              | 0.69 | 0.008                         | 0.031 | 1.80             | 7.05           |
| ST-5               | 0.07              | 0.41              | 1.28 | 0.051                         | 0.192 | 4.10             | 6.98           |
| ST-6               | 0.04              | 0.24              | 0.79 | 0.010                         | 0.035 | 2.60             | 9.42           |
| ST-7               | 0.04              | 1.00              | 1.48 | 0.010                         | 0.050 | 2.37             | 10.71          |
| ST-8               | 0.15              | 0.14              | 0.90 | 0.019                         | 0.066 | 2.21             | 6.98           |
| ST-9               | 0.04              | 0.15              | 0.71 | 0.008                         | 0.035 | 2.06             | 8.19           |
| ST-10              | 0.04              | 0.10              | 0.76 | 0.005                         | 0.028 | 2.22             | 5.38           |
| ST-11              | 0.02              | 0.23              | 0.56 | 0.012                         | 0.039 | 2.17             | 12.33          |
| ST-12              | 0.06              | 0.20              | 0.57 | 0.013                         | 0.035 | 1.79             | 10.74          |
| ST-13              | 0.02              | 0.11              | 0.62 | 0.009                         | 0.027 | 2.01             | 11.07          |
| ST-14              | 0.04              | 0.06              | 0.54 | 0.008                         | 0.026 | 2.11             | 7.96           |
| ST-15              | 0.02              | 0.03              | 0.43 | 0.0052                        | 0.017 | 2.07             | 11.76          |

- High ecological status of all indicators assessed in 5 study sites: St-2, St-11, St-12 St-13 and St-15.
- Good ecological status assessed in 5 study sites: St-1, St-6, St-7, St-9 and St-14 due to O<sub>2</sub> and BOD<sub>7</sub>.
- Moderate ecological status assessed in 3 study sites: St-4, St-5, St-8 due to O<sub>2</sub>, TP, BOD<sub>7</sub> indicators.



| Study sites<br>No. | $\mathbf{NH}_{4^+}$ | NO <sub>3</sub> - | TN   | PO4 <sup>3-</sup> | TP    | BOD <sub>7</sub> | <b>O</b> <sub>2</sub> |
|--------------------|---------------------|-------------------|------|-------------------|-------|------------------|-----------------------|
| ST-1               | 0.02                | 0.01              | 0.47 | 0.008             | 0.028 | 1.54             | 8.37                  |
| ST-2               | 0.02                | 0.06              | 0.47 | 0.003             | 0.022 | 1.82             | 10.88                 |
| ST-3               | 0.34                | 0.12              | 1.53 | 0.045             | 0.115 | 3.09             | 5.13                  |
| ST-4               | 0.06                | 0.02              | 0.69 | 0.008             | 0.031 | 1.80             | 7.05                  |
| ST-5               | 0.07                | 0.41              | 1.28 | 0.051             | 0.192 | 4.10             | 6.98                  |
| ST-6               | 0.04                | 0.24              | 0.79 | 0.010             | 0.035 | 2.60             | 9.42                  |
| ST-7               | 0.04                | 1.00              | 1.48 | 0.010             | 0.050 | 2.37             | 10.71                 |
| ST-8               | 0.15                | 0.14              | 0.90 | 0.019             | 0.066 | 2.21             | 6.98                  |
| ST-9               | 0.04                | 0.15              | 0.71 | 0.008             | 0.035 | 2.06             | 8.19                  |
| ST-10              | 0.04                | 0.10              | 0.76 | 0.005             | 0.028 | 2.22             | 5.38                  |
| ST-11              | 0.02                | 0.23              | 0.56 | 0.012             | 0.039 | 2.17             | 12.33                 |
| ST-12              | 0.06                | 0.20              | 0.57 | 0.013             | 0.035 | 1.79             | 10.74                 |
| ST-13              | 0.02                | 0.11              | 0.62 | 0.009             | 0.027 | 2.01             | 11.07                 |
| ST-14              | 0.04                | 0.06              | 0.54 | 0.008             | 0.026 | 2.11             | 7.96                  |
| ST-15              | 0.02                | 0.03              | 0.43 | 0.0052            | 0.017 | 2.07             | 11.76                 |

- High ecological status of all indicators assessed in 5 study sites: St-2, St-11, St-12 St-13 and St-15.
- Good ecological status assessed in 5 study sites: St-1, St-6, St-7, St-9 and St-14 due to O<sub>2</sub> and BOD<sub>7</sub>.
- Moderate ecological status assessed in 3 study sites: St-4, St-5, St-8 due to O<sub>2</sub>, TP, BOD<sub>7</sub> indicators.
- Poor ecological status assessed in 2 study sites: St-3 and St-10, where O<sub>2</sub> was <5.99 mg l<sup>-1</sup>.

# How much of nutrients are delivered to Plateliai Lake?

Input = concentration × creek debit

Input measured at study sites: St-1, St-3, St-11, St-4, St-10, St-6, St-8, St-12, St-13, St-14.

Output measured at St-15 study site.



### Nitrogen inputs to lake



- Nitrogen inputs to the lake varied seasonally and depended on the site;
- The highest input was during winter and summer periods, lowest fall;
- The nitrogen was primarily delivered in dissolved organic and particulate forms.







- Phosphorus inputs to the lake varied seasonally and depended on the site;
- DIP fraction in total phosphorus input contributed relatively low part.







# Can natural or human-made stretches reduce nutrient inputs to the lake?



Positive value indicate production

Negative value – uptake.





# The role of buffering streches



Positive value indicate production whereas negative value – uptake.

# Simple balance of TN and TP in Plateliai Lake

| Season    | Input to lake                        | Output           | Difference (output – input) |  |  |  |  |  |  |
|-----------|--------------------------------------|------------------|-----------------------------|--|--|--|--|--|--|
|           | TN balance (kg month <sup>-1</sup> ) |                  |                             |  |  |  |  |  |  |
| Žiema     | 986                                  | 1732             | 746                         |  |  |  |  |  |  |
| Pavasaris | 241                                  | 987              | 746                         |  |  |  |  |  |  |
| Vasara    | 734                                  | 1004             | 270                         |  |  |  |  |  |  |
| Ruduo     | 235                                  | 239              | 4                           |  |  |  |  |  |  |
|           |                                      | TP balance (kg n | nonth-1)                    |  |  |  |  |  |  |
| Žiema     | 21                                   | 73               | 52                          |  |  |  |  |  |  |
| Pavasaris | 11                                   | 40               | 29                          |  |  |  |  |  |  |
| Vasara    | 33                                   | 39               | 6                           |  |  |  |  |  |  |
| Ruduo     | 12                                   | 8                | -4                          |  |  |  |  |  |  |
|           |                                      |                  |                             |  |  |  |  |  |  |



# Survey in Plateliai Lake

Research was done from April to October 2022. At 5 study sites:

- 1 central deep (depth 43 m)
- 2 northern (depth 7 m)
- 3 western (depth 9 m)
- 4 southern (depth 11 m)
- 5 eastern (depth 25 m)

Analysis:

- Water column profiles (T, O<sub>2</sub>, pH, conductivity)
- Nutrient forms (TN, TP,  $DIN=NH_4^+ + NO_x, PO_4^{3-}$ )
- Biological parameters (Chl-a, Phytoplankton)
- BOD<sub>7</sub>

### Past and present ecological status of Plateliai Lake

| Years  | EQR  | TN   | TP    | BOD <sub>7</sub> | Class/Status |
|--------|------|------|-------|------------------|--------------|
| 2001   | 1.35 | 0.44 | 0.009 | 1.05             | High         |
| 2002   | 0.83 | 0.54 | 0.012 | 1.42             | High         |
| 2003   | 1.31 | 0.43 | 0.011 | 1.06             | High         |
| 2004   | 1.33 | 0.40 | 0.000 | 1.28             | High         |
| 2005   | 1.54 | 0.57 | 0.018 |                  | High         |
| 2006   | 1.52 | 0.34 | 0.011 | 1.43             | High         |
| 2007   | 1.07 | 0.69 | 0.014 | 2.28             | High         |
| 2010   | 0.96 | 0.53 | 0.029 | 1.82             | High         |
| 2011   | 0.36 | 0.52 | 0.024 | 1.34             | Good         |
| 2012   | 0.72 | 0.46 | 0.054 | 1.89             | Good         |
| 2013   | 1.12 | 0.50 | 0.046 | 1.22             | Good         |
| 2014   | 1.19 | 0.43 | 0.039 | 1.57             | High         |
| 2015   | 1.29 | 0.48 | 0.037 | 1.36             | High         |
| 2016   | 0.92 | 0.43 | 0.011 | 1.53             | High         |
| 2017   | 0.93 | 0.42 | 0.012 | 2.29             | High         |
| 2018   | 0.68 | 0.48 | 0.014 | 2.19             | High         |
| 2019   | 0.73 | 0.66 | 0.015 | 2.01             | High         |
| 2020   | 0.76 | 0.59 | 0.013 | 1.26             | High         |
| 2022 N | 0.92 | 0.40 | 0.015 | 1.69             | High         |
| 2022 W | 0.91 | 0.44 | 0.015 | 1.58             | High         |
| 2022 D | 0.92 | 0.38 | 0.014 | 1.4              | High         |
| 2022 E | 0.92 | 0.38 | 0.014 | 1.38             | High         |
| 2022 S | 0.94 | 0.40 | 0.015 | 1.38             | High         |

- In 2022, water quality met high ecological status.
- Slightly higher mean values of TN and TP were measured in northern, western and southern part of the lake whereas BOD<sub>7</sub> in northern and western part;
- In the last 20 years, Plateliai Lake remains in high ecological status except 2011-2013, when it decreased to good in terms of EQR and TP.

# Vertical profiles of temperature and oxygen: deepest site





# Vertical profiles of temperature and oxygen: southern lake part





# How much of suspended matter does settle down from water column to sediment?

- Suspended matter sedimentation rates measurement was done 3 times per year: June, August and November;
- At 3 study sites: deepest, western and southern parts;
- Sediment trap holding period 10 days.





### Sedimentation rates of the suspended matter (SM)



Sedimentation rates were 2 times higher in August comparing with other periods;

Higher mean sedimentation rates were estimated in western and southern parts of the lake.

Less than 10% of SM in water column were settled to surface sediment.





### Can lake sediment act as a source of nutrients?

- Sediment cores were done 3 times per year: June, August and November;
- At 3 study sites: northern, western and southern parts;
- Intact cores were collected by scuba divers;
- 5 large (i.d. 8 cm, 30 cm length) intact sediment cores were collected for nutrient fluxes across water-sediment interface measurement;



### Nutrients exchange across sediment-water interface



- Lake sediments were a sink for phosphorus most of the time.
- Sediments all time released DIN water column.
- Sediments also released DON, which flux was by two orders of magnitude higher than DIN.

# Does nutrient are delivered by creeks or recycled within the lake ecosystem?



- Balance calculated according "black box" principle;
- All inputs of nutrients by creeks were summed;
- Nutrient concentrations of water column at different lake zones were averaged by area proportion and time;
- Loads divided by corresponding lake area.

### Annual DIN and TN balance in the Plateliai lake



Input of DIN and TN by creeks is important but water column may produce significant amount of N via recycling;

DON and PN forms are delivered by creeks while in water column DIN;

DON release from sediments is largest and significant in the ecosystem N support.

Units: mg m<sup>-2</sup> day<sup>-1</sup>

### Annual DIP and TP balance in the Plateliai lake



Input of DIP by creeks is important but water column may produce significant amount of DIP via recycling;

Meanwhile TP has significant input by creeks and high uptake in water column;

In the sediment DIP is accumulated.

Units: mg m<sup>-2</sup> day<sup>-1</sup>



# III task. PRELIMINARY MEASURES FOR WATER QUALITY IMPROVEMENT

# Summarizing I and II tasks:





# Actions related to pollution at Salupis and Alminas sub-basins

Salupis sub-basin: the dominating land use – forest;

Alminas sub-basin: the dominating land use – pasture and arable land



Arable land = Pastures = Urbanized = Forest = Wetland = Water bodies



Arable land = Pastures = Urbanized = Forest = Wetland = Water bodies



# Actions related to pollution at Salupis and Alminas sub-basins





# Alminas sub-basin



| Sampling<br>sites      | DIN    | TN     | DIP  | ТР   |  |  |  |
|------------------------|--------|--------|------|------|--|--|--|
| kg month <sup>-1</sup> |        |        |      |      |  |  |  |
| ST-6                   | 50.03  | 100.90 | 1.15 | 3.50 |  |  |  |
| ST-7                   | 127.91 | 171.85 | 1.26 | 4.21 |  |  |  |

### Actions related to pollution at Salupis and Alminas sub-basins



# Actions related to pollution at Salupis and Alminas sub-basins



The potential measures:

I. In order to prevent the over-fertilization of soils and leaching of nutrients **to strengthen the control of the use of fertilizing products** in the basin of this stream

II. Promote the change of land use from a able to grassland (modelled that input of N may decrease  $\sim 49$  %)

III. Restoration of damaged wetland habitats or creation of new wetland/barrier (modelled that 6 % of N and 29 % of P may be assimilated by wetlands)

# Summarizing I and II tasks:







# Actions related to pollution at Juodupis sub-basins



The area according Žemaitija National Park management plan Juodupis



Arable land Pastures Urbanized Forest Wetland Water bodies

### Actions related to pollution at Juodupis sub-basins



| Sampling<br>sites      | DIN   | DIN TN DIP |      | ТР   |  |  |  |
|------------------------|-------|------------|------|------|--|--|--|
| kg month <sup>-1</sup> |       |            |      |      |  |  |  |
| ST-8                   | 72.27 | 223.91     | 2.81 | 8.78 |  |  |  |
| ST-9                   | 70.13 | 206.63     | 1.87 | 7.13 |  |  |  |

Actual sampling sites (yellow) and the potential input places (blue)

### Actions related to pollution at Juodupis sub-basins



#### The potential measures:

- 1. Inventory of the sewage outlets
- 2. Monitoring in different places of the stream to assess the exact sources of pollution
- 3. Maximize the treatment of sewage discharge or move the discharges further away from the stream

### Other measures at lake scale

- Analysis of other lake components as Dreissena polymoprha, fish trophic state, to assess the impact on nutrient recycling and availability;
- Recreation affect to littoral lake zone as shoreline erosion;
- Study on diffusive pollution effect on littoral zone of lake;
- Thermocline observation in lake.

### Other measures

- 1. The optimise already used measure (biogen removal by mowing macrophytes) by changing the places;
- 2. Carry out active dissemination about the concentrated and diffuse pollution that determines the state of the Plateliai lake, its causes, the possibilities of reducing pollution from households and sustainable agriculture, and the mutual economic and environmental benefits that this brings, as well as the possibility of receiving EU support for this.

### THANK YOU FOR YOU ATTENTION!



