

KVB

Get started with Life Cycle Assessment (LCA)

Lea Conzelmann (KWB)

KVB

Dr. Christian Remy

Co-funded by the European Union

Lea Conzelmann

The LCA Team

Is water reuse always green?

- Technically you can provide every kind of water quality (even drinking water quality as in US)
- BUT the higher the water quality, the higher correlation between technical effort and environmental impacts

Life Cycle Assessment (LCA)

- Standardized method defined in ISO 14040/44
- Products / processes / services
- Includes all parts of the life-cycle:
 - Direct emissions (= on-site)
 - Indirect emissions + resource use (electricity, chemicals, waste, ...)
 - Credits for products

Why Life Cycle Assessment?

Life Cycle Assessment (LCA) provides insights on

- Environmental benefits and impacts (e.g. reclaimed water vs. energy consumption)
- Hidden environmental burdens
- Comparison of CO2-emissions of status-quo and new technologies (groundwater pumping vs. energy demand of water purification)

 \rightarrow Benefits and disadvantages of water treatment

LCA focuses on a global and long-term perspective!

Framework of LCA (ISO 14040/44)

Framework of LCA (ISO 14040/44)

Goal and research objective definition

A declaration made by the organisation commissioning the LCA

- Research object → What is considered?
- Interest of realisation → Why is the LCA conducted?
- Target groups → For whom is it conducted?
- Publication → Is it accessible for the public?

Credit: Wikimedia Commons

System boundaries

System description

- Best described in a flow chart •
- Unit processes and their interrelations are • usually represented by boxes
- All in- and outputs must be taken into ٠ consideration

Credit: Wikimedia Commons

BOUNDARY

SYSTEM

System boundaries

Inputs

- Elementary flows (raw materials, • primary energy, air...)
- All processes necessary for the ٠ extraction of raw materials & to produce the energy are considered

Energy, chemicals, fuel &

DW Network

sea

irrigation

consumer

Outputs

- Products
- Emissions to air, water and soil, waste ...

river water

seawater 🛫

avoided water accounted

system bounda

Emisssions to air, **Products** soil & water

DWTP

Tossa Lloret

SWRO Tordera

Functional unit

- Starting point for building a model of the product system
- All inputs and outputs have to be referend to the functional unit
- The functional unit has to be equal for each product/system under consideration
- Example 1: "Environmental impact of a bulb of **10,000 lumen with a** lifetime of 10,000 hours"of daylight"

Incandescen

Credits: Wikimedia Commons

What may be a functional unit for water reuse?

Functional unit

- Starting point for building a model of the product system
- All inputs and outputs have to be referend to the functional unit
- The functional unit has to be equal for each product/system under consideration
- Example 1: "Environmental impact of a bulb of **10,000 lumen with a** lifetime of 10,000 hours"of daylight"

Incandescent

Credits: Wikimedia Commons

• Example 2: "Environmental impact of 1 m³ reclaimed water"

Framework of LCA (ISO 14040/44)

Life cycle inventory

Description of the system:

- Which **materials** in which quantities related to the functional unit are to be considered in the product system?
- Which mass flows with regard to **disposal or recycling and waste treatment** after use of the product exist?
- Which transportations have to be considered?

Data quality and origin:

- Primary data from a full-scale operation plant (often from industry, operators)
- Generic data averages or representative single values (often expert estimations, literature data)
- Estimations (if other data is not available)

Life cycle inventory

Quantification of all inputs to and outputs within the system boundaries:

- Substance flows per unit process (smallest element in the life cycle inventory analysis for which input and output data are quantified)
- Example:

Life cycle inventory

Further step for ISO 14040/44...

Allocation:

- stands for the allocation of emission and energy contributions to the "actual source"
- More details in a following LCA workshop...

Framework of LCA (ISO 14040/44)

Impact assessment or LCA results

- Evaluation of the potential environmental impacts by converting the inventory results into specific impact categories
- For every study the most relevant impact categories are selected individually!
- Impact categories:
 - Non-renewable cumulative energy demand in MJ
 - CO₂-footprint or global warming potential in kg CO₂-Eq
 - Freshwater eutrophication potential in kg P-Eq
 - Marine eutrophication potential in kg N-Eq
 - Human toxicity or eco toxicity potential
 - Many more
 - No impact category for microbial contamination

Show nutrient emissions from WWTP effluent to water bodies

Results CO₂-footprint

How results could look like....

Interpretation

- Identification of significant issues based on the results
- Conclusions \rightarrow What are the main results/ crux of the LCA?
- Limitations \rightarrow Which statements can the LCA make and which not?
- Recommendations → What needs to be developed further? What are the strengths and weaknesses of the technology?

Limitations of LCA in Water Reuse

- LCA is not the best tool to asses water quality
 - The benefit of energy intensive technologies, which are able to provide a higher water quality, is "poorly" addressed in LCA
 - Other assessment methods (e.g. QMRA, QCRA) are better suited here
- "Avoided ground water consumption" is hard to include in LCA
 - It can be included by e.g. crediting "avoided electricity consumption of groundwater pumping" or "avoided electricity for seawater desalination" → the origin of the water determines the amount of the given credits
- Different water footprint methods exist, however, it is difficult to take local conditions into account
 - Example: One m³ groundwater consumption has less impact in Sweden than in Iran
 - Used method must be carefully examined!

What do you need for an LCA?

- 1. Knowledge about the assessed technology and the LCA method
- 2. Good stakeholder **cooperation** (manufacturer, operator, WWTP operator, authorities ...)
- 3. Software & Database:
- Well-known commercial LCA software:
 - Umberto (iPoint) → what we use at KWB with the ecoinvent database
 - GaBi (Sphare) → own sphere database which can be combined with ecoinvent
 - SimaPro → only suitable for product LCA (PRé Sustainability B.V.)
 - 2000-3000 €/year licence fees
- OpenLCA → free and open source software, however, most data sets must be purchased

WWTP: wastewater treatment plant

KIZB

Experience with LCA in water reuse

Lea Conzelmann (KWB)

Example: Tossa de Mar in Spain

- Tossa de Mar: town in the south of Costa Brava, Spain
- Seasonal water stress due to high touristic activity
- Import drinking water from Tordera drinking water plant & the Tordera seawater desalination plant
- Competition on available drinking water resources with other touristic areas
- Is water reclamation of the Tossa WWTP effluent an environmental friendly option?

Drinking water production in Tossa de Mar

Tossa Wells Status quo Can Garrida 🌑 0.04 kWh/m³ Lloret Blau Tossa Wells 0.75 Mm³/year 1250 De Samada 🚯 Riera 🚺 Mas ritort Terra Brava el GH 0.85 kWh/m Tossa **Tordera drinking** Urbanización Tordera Parc 0.75 Mm³/year de Mar water treatment Muralles de Toss Mas Romeu Residencial Santuari de la Mare plant stanys d 🚱 Cala Llevado Canyelles Platja de 👩 Costa Brava 🕓 El Mas Móra 🛛 Can Pruna 🕡 .35 kWh/m³ **Drinking water pumping** 0.40 kWh/m³ Papalús .70 Mm³/year Tordera 0.75 Mm³/year Tordera \rightarrow Tossa de Mar Marcotran Samori ICC8 Wel ENER. Cala Treumal Urb. el Mas Reixac Jardí Botánic Marimurtra Castell del Palafolis 0.04 kWh/m³ Blanes C-32 0.05 Mm³/year 0.32 3.00 kWh/m^3 + chemicals Palafolls DP Tordera (ATL) 0.05 Mm³/year Marineland Catalunya **Desalination plant**

Baseline:

- Existing secondary treatment
- No water reclamation

Option 1 "5% drinking water substitution":

- Existing secondary treatment
- Tertiary treatment (membrane treatment + UV-disinfection + chlorine)
- Reclaimed water is used for irrigation in summer (74,000 m³/year) → <u>5% annual drinking</u> water substitution

Option 2 "17% drinking water substitution":

- <u>Upgraded</u> secondary treatment (higher capacity for a year-round removal of ammonium, which is a pre-condition for extending water reuse to water infiltration)
- Tertiary treatment (membrane treatment + UV-disinfection + chlorine)
- Reclaimed water is used for irrigation in summer and for Tossa Wells infiltration (245,000 m³/year) → <u>17% annual drinking</u> water substitution

WWTP: wastewater treatment plant

Framework of LCA (ISO 14040/44)

Definition of goal and scope

- Functional unit: "environmental impact per m³ reclaimed water" or "environmental impact per person*year"
- System boundaries
- Methodological choices
 - Region: Spain
 - Database: ecoinvent
 - Standard: ISO 14040/44

System boundaries of water reclamation in Tossa de Mar (Spain)

Framework of LCA (ISO 14040/44)

Quantification of all inputs to and outputs from the processes within the system boundaries

Inventory

LCA data demand

Quantification of all inputs to and outputs from the processes within the system boundaries

- Flow chart •
- Substance flows per unit process
- Demand of electricity, heat, chemicals (with • concentrations), ...
- Waste composition and disposal route •
- Products .
- Infrastructure (material demand) ٠

NextGes LCA/ LCC Questionaire on data inventory

Case Study: Tossa de Mar/ Comparison of freshwater resources

kg/year

113.200

Sodium Metabisulphite

Volumes supplied						
parameter	abbr.	unit	Talue	type of sampling	period of sampling	remarks
volume flow	Q_0	mYyear	10.602.319			total
volume flow	Q_3	mYyear	440.096	2		volume for ET
volume flow	Q_3	mYyear	1.750.000			volume for ET
volume flow	Q_a	mYyear	3.209.150			volume for ET
volume flow	Q_9	mYyear	5.203.073	-		volume for Ca
operational para	abbr.	unit	Talue	type of sampling	period of sampling	remarks
electricity DP	ELEC_dp	kWh/year	######		Submission in the second	entire treatme
Ferric chloride	FeCI3	kg/year	3.400			40%
sodium hydroxide	NaOH	kg/year	146.000			30%
Carbon dioxide	C02	kg/year	440.000			98%
Calcium hydroxide	CaOH2	kg/year	374.433			32%
Antiscalant		kg/year	14.060			-

recovery rates							
parameter	abbr.	unit	Talue	type of sampling	period of sampling	remarks	
RO	RO_ef	*	43,7			brine to sea	
operational para	eters pump	ing					
parameter	abbr.	unit	value	type of sampling	period of sampling	remarks	
electricity pumping	ELEC_pu1	kWh/m'	0,043			pumping to T	

				The of semicine	
and the second					
ty pumping	ELEC_pu1	kWh/m'	0,043		pumping to To

98%

Inventory

LCA data demand

Important notes:

- Up-scaling required for pilot data because pilot-plants are not optimized;
 - E.g. specific electricity demand (kWh/m³ water) of a pilot plant > full-scale plant
 - Data from "full-scale" plants in operation needed
- Water quality and chemical demand can often be applied from pilot data
- Calculation of annual average consumptions!

parameter	abbr.	unit	Talue	type of sampling	period of sampling	remarks
volume flow	Q_a	mVyear	10.602.319			total
volume flow	Q_a	mYyear	440.096	6		volume for ET
volume flow	಄	mYyear	1.750.000			volume for ET
volume flow	Q_a	mYyear	3.209.150			volume for ET
volume flow	Q_s	mYyear	5.203.073			volume for C:

operational parameters treatment

parameter	abbr.	unit	value	type of sampling	period of sampling	remarks
electricity DP	ELEC_dp	kWh/year	######			entire treatmen
Ferric chloride	FeCI3	kg/year	3.400			40%
sodium hydroxide	NaOH	kg/year	146.000			30%
Carbon dioxide	CO2	kg/year	440.000			98%
Calcium hydroxide	CaOH2	kg/year	374.433			32%
Antiscalant		kg/year	14.060			-
Sodium Metabisulphi	te	kg/year	113.200			98%

recovery rates	covery rates						
parameter	abbr.	unit	value	type of sampling	period of sampling	remarks	
RO	RO_ef	*	43,7			brine to sea	
operational para	aeters pump	ing					
parameter	abbr.	unit	value	type of sampling	period of sampling	remarks	
electricity pumping	ELEC_pu1	kWh/m'	0,043			pumping to T	

LCA software UMBERTO®

Data source and quality

Parameters, data source and estimated data quality

Parameter/ Process	Data source	Data quality
WWTP - Baseline		
Water quality and quantity	WWTP operator (CC8, 2019)	very good
Energy and chemical consumption	WWTP operator (CCB, 2019)	good
Gaseous emissions from WWTP	Literature (ATV, 2000; Parravicini et al., 2016)	Low-medium
Tertiary Treatment		
Energy and chemical consumption (Scenario 2./3.)	WWTP operator (CCB, 2019; Serra, 2021)	medium
Energy and chemical consumption (Scenario 4.)	Literature (Kraus et al., 2016; Van Houtte, 2016)	medium
Drinking Water Treatment		
Energy and chemical consumption	WWTP operator (CC8, 2019; Sala, 2022; Serra, 2021)	medium

Framework of LCA (ISO 14040/44)

Impact Assessment

CO₂-Footprint for Tossa drinking water mix (today)

Tossa Wells

CO₂-Footprint for Tossa drinking water mix (today)

- Origin of drinking water is decisive for the CO₂-footprint
- Average drinking water (DW) mix Tossa: 0.3 kg CO₂-Eq/m³

CO₂-Footprint in kg CO₂-Eq / (pe*a)

Comparison of Options

Marine eutrophication potential in kg N-Eq/(pe*a)

Comparison of Options

Key findings

LCA in water reuse

- The results of water reuse are energy driven → main part of impacts corresponds to electricity demand
- Electricity demand for membranes and UV is higher than for drinking water production (of the Tossa water mix)
- Water reclamation is able to reduce energy use and the CO₂-footprint, however, the existing Tossa WWTP has to be upgraded to face ammonia issues
- Results of the comparison depend on local alternatives of water production (groundwater pumping < water transportation/pumping <<sea water desalination)

Key findings

LCA in water reuse

- The results of water reuse are energy driven → main part of impacts corresponds to electricity demand
- Electricity demand for membranes and UV is higher than for drinking water production (of the Tossa water mix)
- Water reclamation is able to reduce energy use and the CO₂-footprint, however, the existing Tossa WWTP has to be upgraded to face ammonia issues
- Results of the comparison depend on local alternatives of water production (groundwater pumping < water transportation/pumping <<sea water desalination)

Do you want more insights into the Tossa de Mar LCA?

nextGen report, deliverable 2.1: https://nextgenwater.eu/wp-content/uploads/2023/03/D2.1-Environmental-Life-Cycle-Assessment-and-risk-analysis.pdf

Ansprechpartner: Pia.Schumann@kompetenz-wasser.de,

Elisa.rose@kompetenz-wasser.de

presentation prepared by Lea.Conzelmann

Kompetenzzentrum Wasser Berlin gGmbH Cicerostraße 24, 10709 Berlin